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TESTING FOR COVARIANCE STATIONARITY IN STOCK MARKET DATA *
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This paper proposes several non-parametric tests for covariance stationarity and applies them to common stock return data
from 1834-1987. Recursive variance plots, post-sample prediction tests, Cumulative Sum (henceforth, CUSUM) tests and
modified scaled range tests all show strong non-stationarity in stock returns, primarily due to the large increase in volatility
during the Great Depression. These tests should be useful as diagnostics for data where the assumptions underlying the
desired statistical procedure require stationarity.

1. Introduction

Many estimators and models used in econometrics make the assumption that data are covariance
stationary; that is, the mean, variance and autocovariances of a series exist and are constant over
time. An example of a model requiring constancy of unconditional moments would be Hamilton’s
(1989) regime-shift model. Also, the existence of moments is central to the proofs of asymptotic
properties of many estimators, in particular those emphasizing non-parametric methods. Neither of
these assumptions can be credibly maintained without some examination of the data. Mandelbrot
(1963) argued that the variance of stock returns did not exist and he suggested that one should
examine a plot of the unconditional variance of returns computed recursively. If the estimate
converges to a constant with increasing sample size, covariance stationarity seems a reasonable
assumption. If it wanders around, it would be symptomatic of a process without a variance.

Formally, for a series y, with zero mean, Mandelbrot’s idea is to compute

t
fo,=t71 L ¥ (1)
Jj=1

and to plot fi,, against 7. Although appealing, this suggestion has not been widely adopted.
Indirectly there are some applications, since the widely used CUSUMSs of squares test for structural
change due to Brown, Durbin and Evans (1975) would be equivalent to checking the constancy of
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Fig. 1. Recursive estimates of the monthly stock return variance, 1835-1987.

fi, . Some direct applications have been made by Pagan and Schwert (1989) to U.S. stock return data
over the period 1835-1987 and Hols and De Vries (1989) to foreign exchange rate data. Figure 1
shows Pagan and Schwert’s results, and there is dramatic evidence of a failure of covariance
stationarity around the time of the Great Depression.

In our experience Mandelbrot’s idea is a very useful one, but it has the disadvantage that there is
no formal test statistic associated with it, so it is hard to judge either the constancy or existence of
moments. As mentioned above, the closest one gets to a test is that of Brown, Durbin and Evans, but
the maintained hypotheses there is that y, ~ N(O, 0?), which would be inappropriate for stock
market data. A lack of both normality and independence in the second moment is widely known to
characterize financial asset prices, and this makes it desirable to device tests that are robust to such
features. For this reason we set out a range of test statistics, based on the idea of comparing fi,,
across time. We use a variety of tests because there is no unique way to summarize the evidence. We
illustrate each of these tests with the stock return data whose fi,, is given in fig. 1. Briefly this is a
monthly series on stock returns from 1834-1987 previously analyzed by Schwert (1989), who gives
details of the construction of the data and places it in an historical context. Our only transformation
to the data is to eliminate calendar effects by regressing out twelve monthly dummies, so y, are
actually the residuals from such a regression.

2. Tests for covariance stationarity

As mentioned in the introduction, there is no unique way to construct tests for homogeneity of
variances. In this section we therefore propose three different approaches.
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2.1. Post-sample prediction tests for covariance stationarity

One possibility is to split the sample into two parts and to compare the sample variance %’ and
3% of each sample. Let the sample be split such that 7= T; + T,, T, = kT3, and consider testing the
hypothesis that

T
E Tl_1 Z y12:| =E
Jj=1

Tz_l Z yj2:|' ()

j=Ti+1

A suitable test statistic is 7= % — i” and one can think of this as a member of the class of
‘post-sample prediction tests’ studied by Ghysels and Hall (1989) and Hoffman and Pagan (1989).
Setting k = 1, it follows from those papers that

d
T)/*% — N(O, 2

mzf;y,)) 3)

j=

if 3 is a covariance stationary process with autocovariances v, that obey certain mixing conditions. !
The essential fact for establishing the limiting distribution is that

T, T
Tl_l/2 Z yjz) and T2ﬁ 2 Z YJz) ’ (4)
j=1

J=Ti+1

are asymptotically uncorrelated, while 3§’ and i’ have the same probability limits when y° is

covariance stationary. Since

V=
k=1

vo+2ka) (5)

is proportional to the spectral density of y* at the origin one could consistently estimate it this way.
Instead, we follow Phillips (1987) and estimate it by

%+2 X 4,01~ (J/9). ©)

where ¥, are the estimated serial correlation coefficients of y? calculated over the whole sample. For
the complete sample of 1834-1987, 4%” = 0.0013, 4% = 0.0028 and the ‘s-statistic’

T'2(#/V25 ) = —3.00, (7)

is showing a lack of homogeneity in the variance.

' Our series for y, is really the residuals from a regression. It is easily shown that this does not affect the limiting distribution

of any of the tests discussed here.
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2.2. CUSUM test for covariance stationarity

Something close to the recursive calculation in fig. 1 is to examine the cumulative sums of

(y2 — fi,), where fi, is the variance estimated over the whole period. Thus, define
s [Tr]
¥(1)=(19)" L (7 - i), (®)
j=1

where 0 < r <1, [-] is the ‘integer part of [using the notation in Phillips (1987)] and i, = T"'E7_, 2.
We therefore need to find the limiting distribution of ¢(r) if we are to find pr(¢/(r) > ¢). Denoting
,=E(y}), ¥(r) can be decomposed as

[Tr]

Y(r)= (TV)l/z{ Z (sz“ﬁz+ﬂ2“ﬁz)}

Jj=1

[Tr]
= (TV)I/Z{ ;l(yfﬂuz) +[77]

(1 (771 T
=(T») /{Z¢j—r2¢k-r > ¢m} where ¢, =y? —p,,
=1 k=1 m=[Tr]+1
1 Z[Eq -1/2 T
=(1—r)(Tv) 2L o—r(Tv) * X & f (9)
=1 k=[Tr]+1

If ¢, were normally and independently distributed, then the two terms in (9) would be indepen-
dent. The first of these terms would be an (1 —r)N(O, r) random variable and the second an
rN(0, 1 - r) random variable. This outcome can be generalized to the case when the y; are
non-normal and obey the moment and mixing conditions in Phillips (1987). Lo (1987) formally
proves that {(r) converges in distribution to a Brownian bridge under these conditions, making
Pr(¢(r) < c) equal to the probability that an N(0, r(1 — r)) random variable is less than c.

The testing strategy is similar to that in Brown, Durbin and Evans (1975), except that recursive
residuals are not used and we have centered the test statistic to use an invariance principle. Because
this test might be useful in a wider context, table 1 contains several fractiles ¢*(r) and ¢ (r) of the
Brownian bridge for r= 0.1, 0.2, 0.3,...,0.9. Figure 2 shows {/(¢) plotted against 7 for 1834-1987
along with the lower limit for the 99 percent confidence interval cy,(r) to indicate how cgg(r)
varies with r. There is little doubt about a lack of covariance stationarity over the complete sample.
The minimum value of xl:(t) is —2.51, which is much smaller than c¢g (7).

2.3. Modified scaled range test for covariance stationarity

Another possible test statistic for homogeneity is to compare max y/(r) with min (r), 0 <r <1.
The statistic

R = max z,b(r)—01<nrir<11 Y(r) (10)

O<r<l

2 We thank Andrew Lo for pointing out that the distribution of the Brownian bridge is normal.
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Table 1
Fractiles of the Brownian bridge for various fractions r of the total sample. ?

169

Fraction of r Fraction of T

0.005 0.025 0.05 0.95 0.975 0.995
0.1 -0.773 —0.588 —0.493 0.493 0.588 0.773
0.2 —1.030 —0.784 -0.658 0.658 0.784 1.030
0.3 —1.180 —0.898 —0.754 0.754 0.898 1.180
0.4 —1.262 —0.960 —0.806 0.806 0.960 1.262
0.5 —1.288 —0.980 —0.822 0.822 0.980 1.288
0.6 —-1.262 —0.960 ~0.806 0.806 0.960 1.262
0.7 —1.180 ~0.898 —0.754 0.754 0.898 1.180
0.8 —1.030 —0.784 —0.658 0.658 0.784 1.030
0.9 -0.773 —0.588 —0493 0.493 0.588 0.773

? These fractiles are based on the cumulative normal density with a variance r(1—r). The 0.005 and 0.995 fractiles are the

lower and upper limits for a 1 percent level test, cgq,(7) and ¢go(r).

is termed the modified scaled range statistic by Haubrich ‘and Lo (1988), in recognition of its origin
in the scaled range statistic of Mandelbrot (1972). For 1834-1987, R = 2.36, and from Haubrich and
Lo (1988, table 1a), Pr[R > 2.36] < 0.005, reinforcing our previous conclusion that there is strong

evidence of a lack of covariance stationarity over the complete sample.
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Fig. 2. CUSUM test for stationarity of stock return variance, 1834-1987 (with 0.005 fractile from the sampling distribution).
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3. Conclusion

Our paper has aimed at presenting some ways for assessing whether a series exhibits covariance
stationarity by exploiting information based on recursive estimates of the conditional variance. In all
our proposed tests, monthly stock returns exhibited a failure of covariance stationarity over the
period 1834-1987, calling into question any models and estimators employing such data and which
rely on covariance stationarity. For example, it would be meaningless to compute an autocorrelation
function. Because the tests rejected at high levels of significance we were not concerned about their
power, and simulations (not reported) showed that correspondence of asymptotic and nominal
significance levels was good with this large data set. However, if our tests are to be applied more
generally, it would be useful to assess their power properties both analytically and by means of
Monte Carlo experiments.
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